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We consider the solution of the following equation :
Ju dAu du dAu
AAu+a -61:*6—7—‘—12'3:/—'—0;':] (1)
in the region G, whose boundary I" is smooth everywhere with the exception of the
origin, near which it consists of two rectilinear segments £; and £ of length Qo ,
intersecting at an angle W (WS 2m),

Coefficients @ and D entering (1), are constants and the solution T(x . i)is assumed
to possess first derivatives continuous within the closed region ¢ and becoming zero
together with the normal derivative everywhere on r except, perhaps, at the origin,

Let us introduce some notation, Function ¢ belongs to the space H%, if the inte-
grals (3
drdy,  ky-ka k
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where 7 is the distance from the origin, are finite,

We shall denote by |[jv [, the sum of all such integrals, Function v &Cyy, if it has
M continuous derivatives in the closed region (7 . By the above assumptions, the sought
solution is 2 member of ('} and moreover, ue H_,% forall 8>0,
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We shall show that such a solution has, near the origin, an asymptotic of the type
I S
u= 3 D r Flairpy (@) @

k=1 1=0
where A, is a set of complex numbers such, that ImA, >1 and Yy s are infinitely
differentiable functions, while ¢ is a polar angle,
We shall utilize some facts known to hold for linear elliptic equations, Let us denote
by SaP aregion, the boundary of which consisits of arcs 7 =@ /D, r=ap, and of
segments =0 and =W, Let ghe function U satisfy
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where functions @ ;, have ¢ derivatives continuous in 5'24
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Then

aPrtp, |2 ki §ltazy |2
SS depag | WSC [ 2 SS aztgges | 171wy J , <o+ 4
5s! ) Qi+a2=0 S»* i

The following assertion [1] about the solution of (3) is true, If
ajp = 0, uE H%  F € H%,

u@ ) =u@ r)=u, (0, )= (0,1, O<<k<k (5)
then MOE o
w = 120 ;2.]0 r o ]nknbh]_ () - w1, mEH, kita
Here A, are the zeros of the multiplicity /%y of the function A(X), contained
within the S[l'ip 1 < Im A < kl -+ 3 —1/2 oy

Function Z(A) is constructed in the following manner, We consider a boundary

value problem
AAu =0, u(@, r)=u, (0, N=u(@, =1y, (0, r)=20 (6)
in the infinite region PO (0 <@ <W). In polar coordinates these relations become
8 9 du 9 d 1 0% 1 33  ou 1 02 1 8%

T "o T ar o 7 ogr T e areg T or T 7 agr 7 agh =
du (M

LT 09 fo=o, om0
Putting Z = In(1/7") , we obtain
Uypp + 2ttoq + Uggee — Aty — Slige T hityy T gy =0
Applying the Fourier transform in ¢, we obtain the following boundary value problem
Upgop = 2AMUgy + A u - hiu — hiug, — 4h%u 4 duy, = 0,
w0 = (0)=u( =u (@ =20
where A are its eigenvalues and |, iis eigenfunctions, Let us find all Ay, General
solution of (7) has the form
u = C;cos iMp + Cysin ihp -+ Cysin (A 4-2) @ - Cacos (A 4 2) @, A5=0, i, 2:1(8)
Conditions {(6) are fulfilled if the determinant

1 €08 iA® 0 — i) sin iAo
0 sin iAo iA ‘A cos iAw

RM=|p sinih+20) ik+2 (k4 2)cos(ih-+2) o (9
1 cos (idh -+ 2) o 0 (— id+ 2ysin(ih+2) 0

becomes equal to zero,
After some elementary transformations we obtain, from (9),
R (A) = 2 id (i - 2) — 20k I\ - 2) cos A cos (ih 4- 2o —
— [(GA <~ 2)? & (iM)?] sin iAo sin (A 4 2) © = 0 (10)
Substitution 2 =ZA + 1 yields forZ
sin? wz —2? sin?e = 0 (11)
Thus, the numbers L (2 +1) where 2 are the roots of (11), will play the part of
Ay in the expansion (4). It remains to consider the solution of (7) when A =27 and

A =1, i.e. when the general solution differs from (8).
If A =27, then the general solution of (7) has the form
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u = Cysin 29 4+ Cy cos 2 + Cyp + C;
Function ¥ satisfies the boundary conditions, if
Cy+Cy= 0, Cysin 20 + Co00520 - Chn +Cy =0
20, L Cy3 =0, 2C; cos 2w — 2C, sin 20 - C3 =0

If the determinant of this system sin © (sin @ — @ cosw) 5= 0, then only a null solu-
tion can satisfy the boundary conditions. Hence, the numbers 1(Z+ 1) where Z are
the roots of (9) will be the indices of XJ. in expansion (4), except for X =27 when
sin © (sin ® — @ cos w) 5= 0, When sin?e = o sinw cos , then the number A = 27
is present in (4) .

Let us now investigate the nonlinear equation {1), We shall have to consider a more
general equation

3
du 9Au du dAu A i
Lw=ddutazgy 5 +bgy o T 2 ey u=] 12)
i, =0 ax'dy

where @ gy are functions of the type '

P ks
;= E E s Inkrasml- (@) Rep, >itj—4
§=0 k=0
and Qg4 are infinitely differentiable functions of the polar angle, We shall prove
a number of lemmas on the solutions of (12) ,
Lemma 1, Let ¥ be a solution of (12) belonging to fz’ooa and O}; , and
dul o, jeH, B>atas+s

lp=jn ip~

Then °
e HQ s+4
Proof . Let us choose a number @, small enough to ensure that when 7" <Qq ,
then the boundary G will consist of rectilinear segments, and let us consider the region

I ae/27 < 1 < ag/201
Introducing the following coordinate wansformations 2 = (,/2™)', ¥ = (a,/2™)y’.
we obtain {(12) in the form o
du BAu du dAu , My
AAu-t-a WW_I— ¥ 5 T+ 4 W = fagt /24"
Applying to U the inequality {3), we obtain

PP, |2 L §%utae f 2
SES aaPaypr | T <C[SS 52Ty T at/ 28"+ |u ;dedg]
3 Ea

and, on returning to the previous coordinate system,
SS a?) (Pi+D2) 2
92 (P11Ps)
En

2
dedy < ¢ SS ae®
Summation of these inequalities yields the final result

fPrtPzy,
=+ [ u [Pdzdy
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e E4+2D,+3PD; “ -3
S§ axmayp’ r P dzdy <e S§ {rm+2m+2pa+8 291-2¢; aquay; -+ r* l w l z:’ dwdy

Lemma 2, Equation AAu = r? Inér @g, (p) has a particular solution of the form
Pts

u= 3 rfmire, ()
j=0
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satisfying the boundary conditions 3
w (0, 1) =u (0, 1) = 55w r) =55 w (@ r)=0

Number P is equal to the multiplicity of the root 3 + 1 in Equation (11). Existence
of such a particular equation can be verified directly by substitution, Similar proof is
given in [2],

Lemma 3, Let Z= r* Ink mp (p) be an arbitrary function infinitely differen-
tiable in ¢, and let 7 > 0 be any number, There exists a function U of the form

k;
2
A
v= 3 ﬁ riinfry, (@), Reh; >4
j=0 k=0
satisfying the conditions

9 9 u
v(0,7) =7 (o, ")=a_?§”(0: ")=§6‘v(m,l‘)=0,Lo(v)—Z= o (rH)

Proof . We shall seek function U inthe form V=0 +wy .
Taking the solution of Equation AAD; =7, which is by Lemma 2 exists, as ¥; and
making in (12) the substitution D ~U; =4 , we obtain, for U,
p K
Lywy = 2 ZJ P lnkrlpstlj) (@)
7=1 k=0
Here L, is an operator similar to Lo . Let us then assume that Yy =Vp +Wg where
wa is the solution of AAUp =4 satisfying the requirements of Lemma 2, We obtain,
for the function Wp , Equation LzWg =Za

ks
2y = ﬁ] ﬁ Filakrg® (),  Red;>Red +2
j=1k=0

Repeating the above process, we can establish after a finite number of steps that the
function U =U; +Ug+ .., +Up satisfies all the requirements of Lemma 3. We shall

show the validity of (2) for the solution of (1), Consider the function ¥ = 6w where
0 is an infinitely differentiable function equal to zero everywhere except that vicinity
of the coordinate origin, in which the boundary of & consists of rectilinear segments,
and equal to unity in some vicinity of the origin (e, g. when 7S Q4/2) ., Function Uy
satisfies Equation duy 0Awy duy 8Auy

Adui 4 a5 5= + By oz — (13)
where /i=7 in some vicinity of the origin, Let us represent J7 as
h=P (2, y) + Fy Fy=o(r™
Here A is an /M th degree polynomial . By Lemma 3, there exists a function
2 Y o,
v= 2 rilnfr, (9)
=1K=0
such, that
m v (0, r) v (o, r) -0
Li—Py=o(r™. v(0,r)=2(0,7)="30"=""g9 =
Let us make a substitution 4y =0 +Z in(11), Then, for £ we obtain
LZ=F,  Fy=o0(™), Fy € H™g, B> =2 (14)
Function Z belongs to () and to Hai; when @ > 0. Consequently, by Lemma 1
S € Hyypm g

Let us write (14) as
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Adz = @, =l G+a+2m+81
»

h21 20 r klnir\p(o (@) - =1, = H_M;’:;'ln, Re A’h >2

== ]—-
By the inclusion theorem we have 2,& C,. Function £ satisfies Equation
Lyzy =P 2 &

121 = P51 g3, Pse 1{—-4+1+*m+51 g3 == E 2 rk ln"rg,\.j (‘P), Re ?”h > —_
E=1j==)

Let us now find, according to Lemma 3, function 27 such, that
Liyi—g & H—6+<1+2m+81
Substituting Up=2,+0 5 , we obtain

Lizs = $a, ©: € H s,
which again can be written as
8dz =P, RS s,
and, on applying (4), yield ,
Dd
Za== Z Z r 3111}‘1'11),\.1)(1) (9) 4 23
i=1k=0

Continuing this process, we can find further terms of the asymptotic and the solution
U(x, Y)can therefore be represented as

u (e, y) = 2 2 riinfry, (@) + wCH™, B> —1, ve=ix4n
1=1 k=0
where |1, are the roots of (11), We should note that the first term of the asymptotic
(2) is defined by the principal part of Equation (1) only, The exponent Yy is, in this
case, the number Zji; (where [y is that of the roots of (11) lying above the straight
line ImA =2, which has a smallest imaginary part),
As an example, let us consider the case W= 21T, Here we have 1, =71/2 and we
obtain the following expressmn for W

u= 3 3 i PPy (P) (0 =3, 4 i Ky =0, ky=1)
n;SI“O
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