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We consider the solution of the following equation : 
i)u (7 AU 8~ ~Au 

AAu -t a 3; a;, - _.;_ b - -- - 
ay 33; =i (1) 

in the region G , whose boundary r is smooth everywhere with the exception of the 

origin, near which it consfsrs of two rectilinear segments 4 and R, of length a o , 
intersecting at an angle W (W 5 277) , 

Coefficients a and b entering (I), are constants and the solution U(X, ,&is assumed 

to possess first derivatives continuous within the closed region G and becoming zero 

together with the normal derivative everywhere on r except, perhaps, at the origin, 
Let us introduce some notation. Function D belongs to the space Nzk, If the inte- 

gfals 

where T is the distance from the origin, are finite. 

We shall denote by jj VI& the sum of all such integrals. Function P EC,, if it has 
m continuous derivatives in the closed region G . By the above assumptions, the sought 

solution is a member of cl and moreover, u E H_Z+$ for all @ > 0. 
We shall show that such a solution has, near the origin, an asymptotic of the type 

(2) 

where x, is a set of complex numbers such, that Im kk > 1 and qkkJ are infinitely 

differentiable functions, while fp is a polar angle. 

We shall utilize some facts known to hold for linear elliptic equations , Let us denote 

by sap a region, the boundary of which consisits of arcs r = a/p, 7 = ap , and of 
segments Cp= 0 and Cp = UJ, Let ;he function D satisfy 

where functions CC Ik have g derivatives continuous in S;?& 
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Then 

The following assertion [l] about the solution of (3) is true. If 

CZip S 0, u E H9kE I; E NOktdt 

U (0, ?) = U (0, r) = Up (0, r) = flp (w. P), O<k,<kj 
then 

/=a k=o 
Here h, are the zeros of the multiplicity k, of the function fi( A), contained 

within the strip 1 <IImh<k1+3-1/2a, 

Function .??(A) is constructed in the following manner. We consider a boundary 

value problem 
AAu = 0, u (0, r) = uq (0, r) = u (w, r) == uq, [w, P) = 0 (61 

in the infinite region ro (0 <v < UJ) . In polar coordinates these relations become 

Putting t = In(l/r) r we obtain 

Utttt + %tcpa, + %pJqg - 4Uttt - 4utqq + 4Utt + 4u,, = 0 

Applying the Fourier transform in ti , we obtain the following boundary value problem 

%YP9 - 2h%kw + A4 U + 4iu - &,, - 4it% “r 4U,, = 0, 

u (0) = 11’ (0) = u (0) = U’ (a) = 0 

where i 1 are its eigenvalues and tj i% eigenfunctions. Let us find all k, , General 

solution of (7) has the form 

u = C, cos i&p + C, sin ihcp + CS sin (ih + 2) v + Cd cos (i3, + 2) q, h # 0, i, 21 (8) 

conditions (6) are fulfilled if the determinant 

1 cos iho 0 - ih sin il.0 
0 

R (W = o 
sin iko ih ih cos iho 

sin (ix + 2 .o) ih + 2 (ih + 2) cos (iA + 2) 0 0% 

1 cos (ih + 2) 0 0 (- ih + 2) sin (ih + 2) 0 

becomes equal to zero. 
After some elementary transformations we obtain, from (91, 

R(k)=2r’h(t’h~2)-2i~((ih+Z)Cosi~~cos(i~~22)0- 
- l(ih 4 2)8 4 (iA)‘] sin iho sin (ih + 2) 0 = 0 

Substitution Z = &h + 1 yields forZ 

(10) 

sin* 02 - 2% sin2 0 = 0 (111 
Thus, the numbers t (2 + 1) where Z are the roots of (11). will play the part of 

k J in the expansion (4). It remains to consider the solution of (7) when 1 = 2 6 and 
h = 6 , i. e. when the general solution differs from (8). 

If A = 2t , then the general solution of (7) has the form 
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u = Cl sin 2cc + C2 cos 2’p f C,g, + C, 

Function U satisfies the boundary conditions, if 

Cz $- C, = 0, C, sin 20 i Cz 60s 2 0 + C,o + C, = 0 

2c1 + c, = 0, 2c, CQS 2w - 2C, sin 261 + C, = 0 

If the determinant of this system sin (u (sin 0) - o coso) # 0, then only a null solu- 
tion can satisfy the boundary conditions. Hence, the numbers t(Z f 1) where Z are 
the roots of (9) will be rhe indices of x f in expansion (4j, except for x = 2$ when 

sin w (sin 0 - o cos w) # 0. When sin2o = o sin w cos o, then the number h = 25 
is present in (4). 

Let us now investigate the nonlinear equation (1). We shall have to consider a more 
general equation 

du aAu 
Lou = AAu+ a= aY 

&A 8A1i 
-+bayy+ i aij&u+ 

where a ~j are functions of the type 
i. i=o % 

s=O k==o 

aid % kij are infiniteIy differentiable functions of the polar angle. We shall prove 
a number of lemmas on the solutions of (12) . 

Lemma 1. Let U be a solution of (12) belonging to flooE and $, , and 

Then 
U E $s+4 

Proof , Let us choose a number (& small enough to ensure that when 7 CC&~ , 
then the boundary G will consist of rectilinear segments, and let us consider the region 

& ao/Zn+’ < r < ad2”-1 

Introducing the following coordinate transformations 1: = (a&F)z’, Y = (a&“)$. 

we obtain(12) in the form 

Applying to U the inequality (3), we obtain 

and, OR returning to the previous coordinate system, 

Summation of these inequalities yields the final result 

Lemma 2, Equation AAu = rB In% @p,(@ has a particular solution of the form 
P+s 

U1 = x rc+a initaj (cp) 
j=O 
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satisfying the boundary conditions 
a 

u1 (0, r) = u1 (0, r) = aj 24 ((1, r) = &- u1 (0, r) = 0 

Number &J is equal to the multiplicity of the root @ + 1 in Equation (11) . Existence 

of such a particular equation can be verified directly by substitution. Similar proof is 

given in rL]. 

Lemma 3. Let z = r1 Ink r$ (9) be an arbitrary function infinitely differen- 

tiable in Cp , and let fi > 0 be any number. There exists a function U of the form 

._$l% h. r ’ In ‘r$k j (q), lMj>4 
j=O k=O 

satisfying the conditions 

v (0, r) = u (0, r) = 6 v (0, r) = $- u (0, r) = O,& (0) - 2 = 0 (r? 

Proof . We shall seek function U in the form U = y t WI . 
Taking the solution of Equation AAu, = 2, which is by Lemma 2 exists, as 01 and 

making in (12) the substitution 2~ - U1 = 4 , we obtain, for 4 

L lwl=-J% A. r J Inkrlp& (cp) 
I-1 k=O 

Here LL is an operator similar to Lo . Let us then assume that I& = U2 + W2 where 

wa is the solution of A A U, = i?‘, satisfying the requirements of Lemma 2 . We obtain, 

for the function W2 , Equation LzW2 =22 

j=lk=o 

Repeating the above process, we can establish after a finite number of steps that the 

function V=Vl +Vz+... +V, satisfies all the requirements of Lemma 3 . We shall 

show the validity of (2) for the solution of (1). Consider the function U1 = 8U where 

8 is an infinitely differentiable function equal to zero everywhere except that vicinity 

of the coordinate origin, in which the boundary of &’ consists of rectilinear segments, 

and equal to unity in some vicinity of the origin (e. g. when rs C5,/2) . Function U1 

satisfies Equation au1 aaul au, aau, 
AAul+aagay+bay-g=jl WI 

where Azf in some vicinity of the origin, Let us represent fl as 

11 = PI (I, Y) + F,, F, = 0 (rm) 

Here PI is an 77Zth degree polynomial . By Lemma 3, there exists a function 

_E 3 ih. 
r ’ lnkrgkp (@ 

j=l A’=0 

such, that 

Lz: - PI = 0 (rm), 
IS (0, r.) 

v (0, r) = v (w, r) = acp - 
au (0, r) 

aql =O 

Let us make a substitution U1 = V + L? in (11) . Then, for 2 we obtain 

i&Z = F,, F, = 0 (rm), F, E Hemp, B > -2 (14) 

Function 2 belongs to (?l and to Hapi when Cr > 0. Consequently, by Lemma 1 

5 E &+;;_s 

Let us write (14) as 
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A1.t = (II?, ‘1% E $s+;~& 

t = 5 3 rhklnjrq&) (cp) ;- -.I, 

1 

21 E If 
%+1 

h'=lj=(J 
-4+ci+2m Hehk>2 

By the inclusion theorem we have Z,E C,. Function 2, satisfies Equation 

Let us now find, according to Lemma 3 , function U1 such, that 
%I-2 

Llcl- g3 E K6+a+Zm+&, 

Substituting U, = z ;? c V 2 , we obtain 

LIZ,! = $2, 92 E ff_e;~+;,n+G, 

which again can be written as 

and, on applying (4). yield 

Continuing this process, we can find further terms of the asymptotic and the solution 

U(X, ,Ij) can therefore, be represented as 

u&y)= i 3 y- r. 3 In”rl)h., (cp) t w w c Rim+4 ) fi > - 1, Yk = i &k + d 
3=1t=o 

where j..lk are the roots of (11). We should note that the first term of the asymptotic 

(2) is defined by the principal part of Equation (1) only. The exponent yI is, in this 

case, the number iJ11 ( where I-l1 is that of the roots of (11) lying above the straight 

line Im x = 2 , which has a smallest imaginary part). 

As an example, let us consider the case W = 2ll. Here we have )lk = n/2 and we 

obtain the following expression for U 

rni2 lU liFgnk (9) (n = 3, 4, . ...; k, = 0, k, = i) 
n23t=o 
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