ASYMPTOTIC OF SOLUTION OF THE NAVIER-STOKES EQUATION NEAR THE ANGULAR POINT OF THE BOUNDARY

(ASIMPTOTIKA RESHENIIA URAVNENIIA NAV'E-STOKSA
V OKRESTNOSTI UGLOVOI TOCHKI GRANITSY)
PMM1 Vol.31, No. 1, 1967, pp. 119-123
V. A. KONDRATEV
(Moscow)

(Received April 15, 1966)

We consider the solution of the following equation :

$$
\begin{equation*}
\Delta \Delta u+a \frac{\partial u}{\partial x} \frac{\partial \Delta u}{\partial y}+b \frac{\partial u}{\partial g} \frac{\partial \Delta u}{\partial x}=1 \tag{1}
\end{equation*}
$$

in the region G, whose boundary Γ is smooth everywhere with the exception of the origin, near which it consists of two rectilinear segments ℓ_{1} and ℓ_{2} of length a_{0}, intersecting at an angle ω ($\omega \leq 2 \pi$).

Coefficients a and b entering (1), are constants and the solution $U(x, y)$ is assumed to possess first derivatives continuous within the closed region G and becoming zero together with the normal derivative everywhere on Γ except, perhaps, at the origin.

Let us introduce some notation. Function V belongs to the space $H_{x}^{0 k}$, if the integrals

$$
\iint_{6}^{0} r^{\alpha-2\left(k_{1}+k_{2)}\right.}\left|\frac{\partial^{k_{1}+k_{2}}}{\partial x^{k_{1}} \partial y^{k_{2}}}\right|^{2} d x i d y, \quad k_{2}+k_{3} \leqslant k
$$

where r is the distance from the origin, are finite.
We shall denote by $\|v\|_{k \alpha}^{2}$ the sum of all such integrals. Function $v \in C_{m}$, if it has m continuous derivatives in the closed region G. By the above assumptions, the sought solution is a member of C_{1} and moreover, $u \in H_{-2+\beta}^{0}$ for all $\beta>0$.

We shall show that such a solution has, near the origin, an asymptotic of the type

$$
\begin{equation*}
u=\sum_{k=1}^{\infty} \sum_{j=0}^{j_{k}} r^{-i \lambda_{k}} \ln ^{j} r \psi_{k j}(\varphi) \tag{2}
\end{equation*}
$$

where λ_{k} is a set of complex numbers such, that $\operatorname{Im} \lambda_{k}>1$ and $\psi_{k j}$ are infinitely differentiable functions, while φ is a polar angle.

We shall utilize some facts known to hold for linear elliptic equations. Let us denote by $S_{\mathrm{a}}{ }^{p}$ a region, the boundary of which consisits of arcs $r=a / p, r=a p$, and of segments $\varphi=0$ and $\varphi=\omega$. Let the function U satisfy

$$
\begin{equation*}
\Delta \Delta v+\sum_{i, k=0}^{3} a_{i k}(x, y) \frac{\partial^{k} v}{\partial x^{i} \partial y^{k-i}}=F \tag{3}
\end{equation*}
$$

where functions $a_{1 k}$ have q derivatives continuous in $S_{z}{ }^{4}$

$$
\begin{equation*}
v(0, r)=\frac{\partial v(0, r)}{\partial \varphi}=v(\omega, r)=\frac{\partial v(\omega, r)}{\partial \varphi}=0 \tag{4}
\end{equation*}
$$

Then
$\iint_{S_{2}}\left|\frac{\partial^{p_{1}+p_{2_{2}}}}{\partial x^{p_{1}} \partial y^{\gamma_{2}}}\right|^{2} d x d y \leqslant c\left[\sum_{q_{1}+q_{2}=0}^{q} \iint_{S_{2}}\left|\frac{\partial^{q_{1}+q_{2}}}{\partial x^{q_{1}} \partial y^{q_{2}}}\right|^{2}+|v|^{2} d x d y\right], \quad p_{1}+p_{2} \leqslant q+4$
The following assertion [1] about the solution of (3) is true. If

$$
\begin{gather*}
a_{i k}=0, \quad u \in H^{\circ} k_{\chi} \quad F \in H^{\alpha_{k_{i_{\alpha_{1}}}}} \\
u(0, r)=u(\omega, r)=u_{\varphi}(0, r)=u_{\varphi}(\omega, r), \quad 0 \leqslant k \leqslant k_{j} \tag{5}
\end{gather*}
$$

then

$$
u=\sum_{j=0}^{M} \sum_{k=0}^{k_{j}} r^{-i \lambda_{j}} \ln ^{k} r \psi_{k_{j}}(\varphi)+u_{k}, \quad u_{1} \in H_{\alpha_{1}}{ }^{{ }^{k_{1}+4}}
$$

Here λ_{ρ}, are the zeros of the multiplicity κ_{j} of the function $R(\lambda)$, contained within the strip

$$
1 \leqslant \operatorname{Im} \lambda<k_{1}+3-1 / 2 \alpha_{1}
$$

Function $R(\lambda)$ is constructed in the following manner. We consider a boundary value problem

$$
\begin{equation*}
\Delta \Delta u=0, \quad u(0, r)=u_{\varphi}(0, r)=u(\omega, r)=u_{\varphi}(\omega, r)=0 \tag{6}
\end{equation*}
$$

in the infinite region $\Gamma_{0}(0<\varphi<\omega)$. In polar coordinates these relations become

$$
\begin{gather*}
\frac{\partial}{\partial r} r \frac{\partial^{2}}{\partial r^{2}} r \frac{\partial u}{\partial r}+\frac{\partial}{\partial r} r \frac{\partial}{\partial r} \frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \varphi^{2}}+\frac{1}{r^{2}} \frac{\partial^{3}}{\partial r \partial \varphi} r \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \varphi^{2}} \frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \varphi^{2}}=0 \\
u=\left.\frac{\partial u}{\partial \varphi}\right|_{\varphi=0, \varphi=\omega}=0 \tag{7}
\end{gather*}
$$

Putting $t=\ln (1 / r)$, we obtain

$$
u_{t t t t}+2 u_{t t \varphi \varphi}+u_{\varphi \varphi \varphi \varphi}-4 u_{t t t}-4 u_{t \varphi \varphi}+4 u_{t t}+4 u_{\varphi \varphi}=0
$$

Applying the Fourier transform in t, we obtain the following boundary value problem

$$
\begin{gathered}
u_{\varphi P \varphi \varphi}-2 \lambda^{2} u_{\varphi \varphi}+\lambda^{4} u+4 i u-4 i u_{\varphi \varphi}-4 \lambda^{2} u+4 u_{\varphi \varphi}=0 \\
u(0)=u^{\prime}(0)=u(\omega)=u^{\prime}(\omega)=0
\end{gathered}
$$

where λ_{\jmath} are its eigenvalues and $\psi_{\mathcal{J}}$ its eigenfunctions, Let us find all λ_{j}. General solution of (7) has the form
$u=C_{1} \cos i \lambda \varphi+C_{2} \sin i \lambda \varphi+C_{3} \sin (i \lambda+2) \varphi+C_{4} \cos (i \lambda+2) \varphi, \lambda \neq 0, \quad i, \quad 2 i$ (8)
Conditions (6) are fulfilled if the determinant

$$
R(\lambda)=\left|\begin{array}{cccc}
1 & \cos i \lambda \omega & 0 & -i \lambda \sin i \lambda \omega \tag{9}\\
0 & \sin i \lambda \omega & i \lambda & i \lambda \cos i \lambda \omega \\
0 & \sin (i \lambda+2 \omega) & i \lambda+2 & (i \lambda+2) \cos (i \lambda+2) \omega \\
1 & \cos (i \lambda+2) \omega & 0 & (-i \lambda+2) \sin (i \lambda+2) \omega
\end{array}\right|
$$

becomes equal to zero.
After some elementary transformations we obtain, from (9),

$$
\begin{gather*}
R(\lambda)=2 i \lambda(i \lambda+2)-2 i \lambda(i \lambda+2) \cos i \lambda \omega \cos (i \lambda+2) \omega- \\
-\left[(i \lambda+2)^{2}+(i \lambda)^{2}\right] \sin i \lambda \omega \sin (i \lambda+2) \omega=0 \tag{10}
\end{gather*}
$$

Substitution $\boldsymbol{z}=\boldsymbol{i} \lambda+1$ yields for \boldsymbol{z}

$$
\begin{equation*}
\sin ^{2} \omega z-z^{2} \sin ^{2} \omega=0 \tag{11}
\end{equation*}
$$

Thus, the numbers $\ell(Z+1)$ where Z are the roots of (11), will play the part of λ_{f} in the expansion (4). It remains to consider the solution of (7) when $\lambda=2 i$ and $\lambda=\ell$. i. e. when the general solution differs from (8).

If $\lambda=2 t$, then the general solution of (7) has the form

$$
u=C_{1} \sin 2 \varphi+C_{2} \cos 2 \varphi+C_{3} \varphi+C_{4}
$$

Function u satisfies the boundary conditions, if

$$
\begin{array}{cc}
C_{2}+C_{4}=0, & C_{1} \sin 2 \omega+C_{2} \cos 2 \omega+C_{3} \omega+C_{4}=0 \\
2 C_{1}+C_{3}=0, & 2 C_{1} \cos 2 \omega-2 C_{2} \sin 2 \omega+C_{3}=0
\end{array}
$$

If the determinant of this system $\sin \omega(\sin \omega-\omega \cos \omega) \neq 0$, then only a null solution can satisfy the boundary conditions. Hence, the numbers $\ell(\boldsymbol{z}+1)$ where \boldsymbol{z} are the roots of (9) will be the indices of λ_{j} in expansion (4), except for $\lambda=2 i$ when $\sin \omega(\sin \omega-\omega \cos \omega) \neq 0$. When $\sin ^{2} \omega=\omega \sin \omega \cos \omega$, then the number $\lambda=2 \ell$ is present in (4).

Let us now investigate the nonlinear equation (1). We shall have to consider a more general equation

$$
\begin{equation*}
L_{0} u=\Delta \Delta u+a \frac{\partial u}{\partial x} \frac{\partial \Delta u}{\partial y}+b \frac{\partial u}{\partial y} \frac{\partial \Delta u}{\partial x}+\sum_{i, i=0}^{3} a_{i j} \frac{\partial^{i+j}}{\partial x^{i} \partial y^{i}} u=f \tag{12}
\end{equation*}
$$

where $a_{1 j}$ are functions of the type

$$
a_{i i}=\sum_{s=0}^{p} \sum_{k=0}^{k_{s}} r^{\mu_{s}} \ln ^{k} r a_{s k i j}(\varphi), \quad \text { Re } \mu_{s}>i+i-4
$$

and $a_{s k 1 j}$ are infinitely differentiable functions of the polar angle. We shall prove a number of lemmas on the solutions of (12).

Lemma 1. Let u be a solution of (12) belonging to $H_{\alpha}^{\circ O}$ and C_{p}, and

$$
\left.u\right|_{\Gamma}=\left.\frac{\partial u}{\partial n}\right|_{\Gamma}=0, \quad j \in H_{\beta}^{\delta_{s}}, \quad \beta \geqslant \alpha+2 s+8
$$

Then

$$
u \in H_{\beta}{ }^{{ }^{s}+4}
$$

Proof. Let us choose a number a_{0} small enough to ensure that when $r<a_{0}$, then the boundary G will consist of rectilinear segments, and let us consider the region E_{n}

$$
a_{0} / 2^{n+1} \leqslant r \leqslant a_{0} / 2^{n-1}
$$

Introducing the following coordinate transformations $x=\left(a_{0} / 2^{n}\right) x^{\prime}, y=\left(a_{0} / 2^{n}\right) y^{\prime}$. we obtain (12) in the form

$$
\Delta \Delta u+a \frac{\partial u}{\partial x^{\prime}} \frac{\partial \Delta u}{\partial y^{\prime}}+b \frac{\partial u}{\partial y^{\prime}} \frac{\partial \Delta u}{\partial x^{\prime}}+a_{i j^{\prime}} \frac{\partial^{i+j} u}{\partial x^{\prime} \partial y^{\prime j}}=f a_{0}^{4} / 2^{4 n}
$$

Applying to u the inequality (3), we obtain

$$
\iint_{E_{\mathrm{t}}}\left|\frac{\partial^{p_{1}+p_{i}} u}{\partial x^{\prime p_{1}} \partial y^{\prime} p_{3}}\right|^{2} d x^{\prime} d y^{\prime} \leqslant c\left[\iint_{E_{3}}\left|\frac{\partial^{q_{1}+q_{z}}}{\partial x^{\prime q_{1}} \partial y^{\prime q_{2}}}\right|^{2} a_{0}^{8} / 2^{8 n}+|u|^{2} d x d y\right]
$$

and, on returning to the previous coordinate system.

$$
\iint_{E_{n}} \int_{0}^{a_{0}^{2}\left(p_{1}+p_{2}\right)} 2^{2\left(p_{1}+p_{z}\right)}\left|\frac{\partial^{p_{1}+p_{2}} u}{\partial x^{p_{1}} \partial y^{p_{2}}}\right|^{2} d x d y \leqslant c \iint_{E_{n+1}} \frac{a_{0}{ }^{8}}{2^{8 n}}\left|\frac{\partial^{q_{1}+q_{2}} f}{\partial x^{q_{1}} \partial y^{q_{z}}}\right|^{2}+|u|^{2} d x d y
$$

Summation of these inequalities yields the final result
$\iint_{G}\left|\frac{\partial^{p_{1}+p_{2}} u}{\partial x^{p_{1}} \partial y^{p_{2}}}\right|^{2}{ }_{r^{\alpha+2 p_{1}+2 p_{2}}} d x d y \leqslant c \int_{G}\left[r_{r}^{\alpha+2 p_{1}+2 p_{z}+8-2 q_{1}-2 q_{2}}\left|\frac{\partial^{q_{1}+q_{2}} f}{\partial x^{p_{2}} \partial y^{q_{2}}}\right|^{2}+r^{\alpha}|u|^{2}\right] d x d y$
Lemma 2. Equation $\Delta \Delta u=r^{\beta} \ln ^{8} r \Phi_{\beta s}(\varphi)$ has a particular solution of the form

$$
u_{1}=\sum_{j=0}^{p+\beta} r^{\beta+4} \ln { }^{i} r \Phi_{j}(\Phi)
$$

satistying the boundary conditions

$$
\begin{aligned}
& \text { undary conditions } \\
& u_{1}(0, r)=u_{1}(\omega, r)=\frac{\partial}{\partial \varphi} u_{1}(0, r)=\frac{\partial}{\partial \varphi} u_{1}(\omega, r)=0 .
\end{aligned}
$$

Number p is equal to the multiplicity of the root $\beta+1$ in Equation (11). Existence of such a particular equation can be verified directly by substitution. Similar proof is given in [2].

Lemma 3. Let $Z=r^{\lambda} \ln k r \psi(\varphi)$ be an arbitrary function infinitely differentiable in φ, and let $H>0$ be any number. There exists a function V of the form

$$
v=\sum_{j=0}^{p} \sum_{k=0}^{k_{j}} r^{\lambda_{j}} \ln ^{k} r \psi_{k j}(\varphi), \quad \operatorname{Re} \lambda_{j} \geqslant 4
$$

satisfying the conditions

$$
v(0, r)=v(\omega, r)=\frac{\partial}{\partial \varphi} v(0, r)=\frac{\partial}{\partial \varphi} v(\omega, r)=0, L_{0}(v)-Z=o\left(r^{H}\right)
$$

Proof. We shall seek function v in the form $v=v_{1}+w_{1}$.
Taking the solution of Equation $\Delta \Delta v_{1}=Z_{1}$ which is by Lemma 2 exists, as v_{1} and making in (12) the substitution $v-v_{1}=w_{1}$, we obtain, for w_{1}

$$
L_{1} w_{1}=\sum_{j=1}^{p} \sum_{k=0}^{k_{j}} r^{\lambda_{j}} \ln ^{k} r \psi_{k j}^{(1)}(\varphi)
$$

Here L_{1} is an operator similar to L_{0}. Let us then assume that $w_{1}=v_{2}+w_{2}$ where w_{2} is the solution of $\Delta \Delta v_{2}=Z_{1}$ satisfying the requirements of Lemma 2. We obtain, for the function w_{2}, Equation $L_{z} w_{2}=Z_{2}$

$$
z_{2}=\sum_{j=1}^{p} \sum_{k=0}^{k_{j}} r^{\lambda_{j}} \ln { }^{k^{k}} \psi_{k j}^{(2)}(\varphi), \quad \operatorname{Rc} \lambda_{j} \geqslant \operatorname{Rc} \lambda+2
$$

Repeating the above process, we can establish after a finite number of steps that the function $v=v_{1}+v_{2}+\ldots+v_{n}$ satisfies all the requirements of Lemma 3 . We shall show the validity of (2) for the solution of (1). Consider the function $u_{1}=\theta u$ where θ is an infinitely differentiable function equal to zero everywhere except that vicinity of the coordinate origin, in which the boundary of G consists of rectilinear segments, and equal to unity in some vicinity of the origin ($e_{.}$g. when $r \leq a_{0} / 2$). Function u_{1} satisfies Equation

$$
\begin{equation*}
\Delta \Delta u_{1}+a \frac{\partial u_{1}}{\partial x} \frac{\partial \Delta u_{1}}{\partial y}+b \frac{\partial u_{1}}{\partial y} \frac{\partial \Delta u_{1}}{\partial x}=f_{1} \tag{13}
\end{equation*}
$$

where $f_{1} \equiv f$ in some vicinity of the origin, Let us represent f_{1} as

$$
f_{1}=P_{1}(x, y)+F_{1}, \quad F_{1}=o\left(r^{m}\right)
$$

Here P_{1} is an m th degree polynomial . By Lemma 3, there exists a function

$$
v=\sum_{j=1}^{p} \sum_{k=0}^{k_{j}} r^{i \lambda_{j}} \ln ^{k^{k}} r \psi_{k p}(\varphi)
$$

such, that

$$
L v-P_{1}=o\left(r^{m}\right), \quad v(0, r)=v(\omega, r)=\frac{\partial v(0, r)}{\partial \varphi}=\frac{\partial v(\omega, r)}{\partial \Phi}=0
$$

Let us make a substitution $u_{1}=v+Z$ in (11). Then, for Z we obtain

$$
\begin{equation*}
L_{1} Z=F_{2}, \quad F_{2}=0\left(r^{m}\right), \quad F_{2} \in H_{\beta}^{\circ m}, \beta>-2 \tag{14}
\end{equation*}
$$

Function Z belongs to C_{1} and to $H_{\alpha-6}^{\text {ao }}$ when $\alpha>0$. Consequently, by Lemma 1

$$
z \in H_{\alpha+2 m-6}^{\circ}
$$

Let us write (14) as

$$
\begin{aligned}
& \Delta \Delta z=\mathrm{a}_{2}, \quad\left[\mathrm{l}_{2} \in I_{-6+\alpha+2 m+\delta_{1}}^{{ }_{2} m-3}\right. \\
& z=\sum_{k=1}^{n} \sum_{j=0}^{j_{k}} r^{\lambda} k \ln ^{j} r \psi_{k j}^{(0)}(\varphi) \div z_{1}, \quad z_{1} \in H_{-4+\alpha+2 m}^{{ }^{\circ} m+1}, \quad \text { Re } \lambda_{k} \geqslant 2
\end{aligned}
$$

By the inclusion theorem we have $Z_{1} \in C_{2}$. Function Z_{1} satisfies Equation

$$
L_{1} z_{1}=P_{3}+g_{3}, \quad P_{3} \in H_{-4+x+2 m+\hat{s}_{1}}^{\circ}, \quad g_{3}=\sum_{k=1}^{p} \sum_{j=1}^{j_{k-1}} r^{\lambda_{k}} \ln { }^{3} r g_{k j}(\varphi), \quad \text { Re } \lambda_{k}>-1
$$

Let us now find, according to Lemma 3 , function V_{1} such, that

$$
L_{1} x_{1}-g_{3} \in H_{-6+\alpha+2 m+\delta_{1}}^{o_{m-2}}
$$

Substituting $u_{2}=z_{2}+v_{2}$, we obtain

$$
L_{1} z_{2}=\psi_{2}, \quad \psi_{2} \in H_{-6+x+2 m+\delta_{1}}^{: m-2}
$$

which again can be written as

$$
\Delta \Delta z_{2}=F_{2}^{(\mathbf{1})}, \quad F_{2}^{(1)} \in I_{-\mathfrak{f}+\alpha+2 m+\delta_{1}}^{\mathbf{o}_{m-2}}
$$

and, on applying (4), yield

$$
z_{2}=\sum_{j=1}^{p} \sum_{k=0}^{k_{j}} r^{\lambda_{j}} \ln ^{k} r \psi_{k p}^{(1)}(\varphi)+z_{3}
$$

Continuing this process, we can find further terms of the asymptotic and the solution $u(x, y)$ can therefore, be represented as
where μ_{k} are the roots of (11). We should note that the first term of the asymptotic (2) is defined by the principal part of Equation (1) only. The exponent Y_{1} is, in this case, the number $i \mu_{1}$ (where μ_{1} is that of the roots of (11) lying above the straight line $\operatorname{Im} \lambda=2$, which has a smallest imaginary part).

As an example, let us consider the case $\omega=2 \pi$. Here we have $\mu_{k}=n / 2$ and we obtain the following expression for U

$$
u=\sum_{n \geqslant 3} \sum_{k=0}^{k_{n}} r^{n / 2} \ln { }^{k_{r}} \Psi_{n k}(\varphi) \quad\left(n==3,4, \ldots, k_{3}=0, k_{4}=1\right)
$$

BIBLIOGRAPHY

1. Agmon, S. and Douglis, A., Estimates near the boundary for solutions of elliptic partial differential equations. Communs. Pure and Appl. Math. , Vol. 12, pp. 623-727, 1959.
2. Kondrat'ev, V.A., Kraevye zadachi dlia ellipticheskikh uravnenii v konicheskikh oblastiakh (Boundary value problems for elliptic equations in conic regions). Dokl. Akad. Nauk SSSR, Vol. 53, No. 1, 1963.
